Intramolecular aldol-type condensation between side chains of naphthoquinones: biomimetic synthesis of $1,6-$ and 1,8-dihydroxyanthraquinones \dagger

Hidemitsu Uno, ${ }^{* a}$ Akane Masumoto, ${ }^{a}$ Erina Honda, ${ }^{a}$ Yumi Nagamachi, ${ }^{a}$ Youtarou Yamaoka ${ }^{a}$ and Noboru Ono ${ }^{\text {b }}$
${ }^{a}$ Advanced Instrumentation Center for Chemical Analysis, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
${ }^{b}$ Department of Chemistry, Faculty of Science, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan

Received (in Cambridge, UK) 31st May 2001, Accepted 17th October 2001
First published as an Advance Article on the web 7th November 2001

Intramolecular condensation of 2-(acetonyl)-3-acyljuglone derivatives under basic conditions gave 1,6- and/or 1,8-dihydroxyanthraquinones depending on the conditions employed. Treatment of 6-[(3-acetyl-5-methoxy-1,4-dioxo-1,4-dihydro-2-naphthyl)methyl]-2,2-dimethyl-4H-1,3-dioxin-4-one with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in alcohol brought about the intramolecular Knoevenagel-type reaction to give 3-hydroxy-8-methoxy-1-methyl-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylates in good yields, while the same naphthoquinone gave 4-hydroxy-5-methoxy-9,10-dioxo-9,10-dihydroanthracene-2-acetic acid in good yield by treatment with potassium bis(trimethylsilyl)amide (KHMDS). Chrysophanol, aloe-emodin, aloesaponarin I, and K1115A were prepared in good yields.

Introduction

Among various kinds of naturally occurring quinones, dihy-droxy- and trihydroxyanthraquinones are abundantly isolated from different sources. ${ }^{1}$ These quinone skeletons are biologically synthesized from polyketides. ${ }^{2}$ For example, chrysophanol (1), aloe-emodin (2), rhein (3), emodin (4), physcion (5), aloesaponarins (6 and 7), and laccaic acid D (9) are believed to be biosynthesized from the common octaketide having an acetyl group as a starting unit via different biosynthetic pathways, and the key step forming the skeletons is an aldol-type reaction such as a Knoevenagel or a Michael reaction (Scheme 1). ${ }^{2}$ During the biosynthesis, the ending unit is variously modified and the oxygen functionality is occasionally removed from the 9 -position of the octaketide. Contrary to the biosynthesis, most successful syntheses of these quinones involve the Diels-Alder or Friedel-Crafts reaction as a key construction step of the target quinone skeletons, ${ }^{3}$ although some biomimetic syntheses of naturally occurring quinones have been reported by Krohn's, Yamaguchi's, Harris', and one of author's, groups. ${ }^{4}$ One of the reasons for the different choice of routes between biological and artificial syntheses may be due to the labile nature of quinones under basic conditions. ${ }^{5}$ Neutral or acidic conditions commonly employed in the Diels-Alder and Friedel-Crafts reactions are thought to be suitable for reactions using protected quinones or the quinones themselves. Basic conditions required for the aldol-type reactions would cause decomposition of quinones or simple reduction to hydroquinones mainly by the electron-transfer mechanism. We thought that this disadvantage under the aldol-type conditions would be overcome when the quinone side chains bearing carbonyl groups at appropriate positions are intramolecularly condensed. In such cases, a proper choice of the conditions would
\dagger Electronic supplementary information (ESI) available: preparation and experimental details of acetonylquinones. See http://www.rsc.org/ suppdata/p1/b1/b104789m/
alter the reaction mode to provide various quinone homologues starting from the common precursor quinones. In this paper, we would like to report 1,6 - and 1,8 -dihydroxyanthraquinone syntheses from common naphthoquinone precursors by the suitable choice of conditions ${ }^{6}$ and the total synthesis of chrysophanol (1), aloe-emodin (2), aloesaponarins I (6) and II (7), and K1115A (8).

Results and discussion

Our strategy

Our retro-synthesis of the dihydroxyanthraquinones 1, 2, 6, and 7 is illustrated in Scheme 2. When the right-hand aromatic

Chrysophanol (1): $\mathrm{R}=\mathrm{H}$
Aloe-emodin (2): $\mathrm{R}=\mathrm{OH}$

Aloesaponarin (6): $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$ Aloesaponarin II (7): $\mathbf{R}=\mathbf{H}$

10

11
| |

Diketide unin
Hexaketide unit
Scheme 2 Retro-synthesis of 1,8- and 1,6-dihydroxyanthraquinones with an acetyl group as the starting octaketide unit.
part of the dihydroxyanthraquinones is cleaved between the β, γ-carbons from the hydroxy group, the common skeleton of 2 -acetonyl-3-acetyl-1,4-naphthoquinones $\mathbf{1 0}$ is obtained. These quinones should be obtained from the reaction of acetyljuglone derivative $\mathbf{1 1}^{7}$ with enol silyl ethers $\mathbf{1 2}$. This quinone $\mathbf{1 1}$ is considered as an equivalent of a hexaketide unit with an acetyl starter.

Preparation of quinones

The highly electrophilic nature of 2-acylnaphthoquinones at the 3 -position was well exemplified by their reactions with allylsilanes, ${ }^{44,7}$ allylstannanes, ${ }^{7,8}$ enamines, ${ }^{9}$ ketene acetals, ${ }^{7}{ }^{710}$ and 2-siloxyfuran, ${ }^{11}$ and various kinds of naturally occurring quinones were successfully synthesized. Simple acetonylation of the acylquinones, however, has not been employed for the construction of higher quinone skeletons, though acetonyl-
ations of alkylated naphthoquinones were accomplished by the reaction with an acetonylpyridinium reagent. ${ }^{12}$ The 2-acetonyl-3-acetylnaphthoquinone $\mathbf{1 4}$ was prepared either in 40% yield via acetonylation of $\mathbf{1 1}$ with 2-(trimethylsiloxy)propene to give 13, followed by oxidation with cerium(Iv) ammonium nitrate (CAN) or in 45% yield via 2-methylallylation of $\mathbf{1 1}$ with trimethyl(2-methylprop-2-enyl)silane followed by sequential oxidation with CAN and ozone (Scheme 3). The pivaloyloxy derivative $\mathbf{1 5}$ was prepared in 58% yield. The detailed discussion for the preparation of $\mathbf{1 4}$ and $\mathbf{1 5}$ is in the Experimental section.

15

14

Scheme 3 Preparation of acetonylnaphthoquinones 14 and 15. Details are in the Experimental section.

For the synthesis of aloesaponarin I 6, an acetoacetate unit was to be introduced to the quinone 11. 1-Methoxy-1,3-bis(trimethylsiloxy)buta-1,3-diene ${ }^{13}$ seemed to be a promising candidate. However, the reaction of $\mathbf{1 1}$ with the reagent resulted in formation of a very complex mixture. 2,2-Dimethyl-4-methyl-ene-6-trimethylsiloxy- $4 H$-1,3-dioxine ${ }^{14} \mathbf{1 6}$ was next chosen as the introducing reagent. The reaction of $\mathbf{1 1}$ and the dioxine reagent $\mathbf{1 6}$ (1.7 molar ratio) was examined in an NMR tube (Scheme 4). The signals due to the quinone $\mathbf{1 1}$ disappeared within 1 h at $-20^{\circ} \mathrm{C}$ without any additive and new signals assigned to adduct $\mathbf{1 7}$ by COSY were observed (the position of a trimethylsilyl group could not be determined; $\mathbf{1 7}$ vs. 17'). Conversion of the cyclohexadienone form 17 to the corresponding phenolic form would be very slow due to the steric encumbrance around the ring sp^{3} carbon. ${ }^{15}$ As the adduct 17 could not be isolated, the reaction mixture was treated with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine to give a spiro compound 19a in 6\% yield in addition to hydroquinone diacetate $18 \mathrm{a}(70 \%)$. When the reaction mixture was treated with tert-butyldimethylsilyl chloride (TBDMSCl) and imidazole, mono-silyl ether 18b (35\%), bis-silyl ether 18c (16%), and spiro compounds (19b, 17\%; 19c, trace) were obtained. As both the spiro compounds 19 b and 19 c could be converted to the quinone $\mathbf{2 0}$ by oxidation, the mixture from the reaction of $\mathbf{1 1}$ with the dioxine reagent $\mathbf{1 6}$ was oxidized by CAN after treatment with trimethylsilyl chloride (TMSCl) and $\mathrm{Et}_{3} \mathrm{~N}$. The quinone compound $\mathbf{2 0}$ was obtained in 84% yield from the starting quinone 11.

Condensation between the side chain carbonyl groups

Intramolecular aldol-type condensation reactions were examined using both quinone and hydroquinone derivatives (13-15) (Scheme 5). Treatment of the dihydrofuran derivative 13 with potassium tert-butoxide in THF gave a mixture of chrysophanol 8-O-methyl ether (21a; 35\%) and aloesaponarin II 8-O-methyl ether (22a; 4\%). Similar treatment of the quinone 14 gave 21a (16%) and 22a (37%). When the reaction of 14 was carried out using KHMDS, an intractable mixture was

16

18a: $\mathbf{R}=\mathbf{R}^{\prime}=A c$
18b: $R=H, R^{\prime}=T B S$
$18 \mathrm{C}: \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{TBS}$

20
Scheme 4 Reaction of 11 with 16. Reagents and conditions: a) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, below $0{ }^{\circ} \mathrm{C}$; b) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, rt ; c) TBSCI, imidazole, DMF, rt ; d) 18b, 18c, 19b, or 19c, CAN aq. MeCN, rt.

Scheme 5 Intramolecular condensation. Reagents and conditions: a) t-BuOK, THF, rt.
obtained. Treatment of the quinone bearing a pivaloyloxy group, compound 15, with potassium tert-butoxide in THF gave the quinone 21b as the sole product in 65% yield.

The preference observed in the reaction of $\mathbf{1 3}, \mathbf{1 4}$ and $\mathbf{1 5}$ is rationalized as follows. In the case of 13, proton abstraction from the phenolic hydroxy group would first occur to give a 6-membered cyclic potassium chelate and then base-induced rearrangement to the corresponding acetonylhydroquinone derivative would occur. In this intermediate, the methyl moiety of the acetyl group would be directed to the neighbouring acetonyl group. Therefore, attack from the methyl moiety to the acetonyl carbonyl carbon would be favoured. On the other hand, the carbonyl oxygen of the acetyl group would be directed to the neighbouring acetonyl group in the quinone $\mathbf{1 4}$ due to the dipole-dipole interaction between the quinone and acetyl carbonyl groups. Therefore, attack from the methyl moiety to the acetonyl carbonyl carbon would be disfavoured. In the case of $\mathbf{1 5}$, the steric hindrance of the pivaloyloxy group would thwart the proton abstraction from the acetonyl methylene, and the intramolecular condensation reaction caused by the proton abstraction from the acetyl group would be predominant to give 21b.

Next, we turned our attention to the preparation of aloesaponarin from the adducts 18 and 20. Deprotection of the diacetate 18a under acidic conditions gave only $\mathbf{2 3}$ in low yield (12%; Scheme 6), whereas the treatment of $\mathbf{1 8 a}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in

Scheme 6 Intramolecular condensation of masked octaketides. Reagents and conditions: a) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{MeOH}$, rt; b) KHMDS, THF, $-78^{\circ} \longrightarrow \mathrm{rt}$; c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}$; d) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$, rt.

THF-MeOH gave an intractable mixture. Hydroquinone mono-silyl ether $\mathbf{1 8 b}$ and quinone $\mathbf{2 0}$ were employed as the substrate. When the quinone $\mathbf{2 0}$ was treated with KHMDS, a clean intramolecular Michael-type reaction between the acetyl and β-alkoxy α, β-unsaturated ester moieties occurred to give only 4-hydroxy-5-methoxy-9,10-dioxo-9,10-dihydroanthracene-2acetic acid 24 in 62% yield (Scheme 6). On the other hand, a completely different condensation route was observed in the reaction of the same quinone compound $\mathbf{2 0}$ with a weak base. When the quinone 20 was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol, an intramolecular condensation between the acetyl and masked β-keto ester moieties was observed to give only 3-hydroxy-8-methoxy-1-methyl-9,10-dioxo-9,10-anthracene-2-carboxylate 25 in 70% yield. When the quinone 20 was treated with $\mathrm{Et}_{3} \mathrm{~N}$ in THF, a similar cyclization leading to 26 occurred in 94% yield.

The anthraquinone 26 was converted to aloesaponarin I 8-Omethyl ether 25 under the same conditions as the transformation of $\mathbf{2 0}$ to $\mathbf{2 5}$. The alteration of condensation route depends on the steric bulkiness and basicity of the base employed. A strong and bulky base such as KHMDS can only deprotonate from the less-hindered acetyl moiety, while weak bases such as an alkoxide and $\mathrm{Et}_{3} \mathrm{~N}$ cannot deprotonate from the acetyl moiety but from the most acidic methylene moiety (Scheme 7).

A similar transformation to 1,6 - and 1,8 -dihydroxyanthraquinones was also achieved by employing the TBS ether 18b as the substrate. Treatment of $\mathbf{1 8 b}$ with KHMDS in THF and with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH brought about the similar ring closures followed by air oxidation to give the quinones 24 and 25 . The yields were slightly lower (50% and 56% yield, respectively) than those from the quinone $\mathbf{2 0}$.

Conversion to naturally occurring 1,8 - and 1,6-dihydroxyanthraquinones

Deprotection of the O-methyl group of 21a, 21b, and $\mathbf{2 5}$ with AlCl_{3} or BBr_{3} gave chrysophanol 1, aloe-emodin ω-pivalate 27, and aloesaponarin I 6 in 91, 84, and 69\% yield (Scheme 8). The physical and spectroscopic data of chrysophanol ${ }^{16} 1$ and aloesaponarin ${ }^{17} 6$ were identical with those reported. The pivaloyl group of $\mathbf{2 7}$ was hydrolyzed with NaOH to give aloe-emodin 2 in 39% yield.

Synthesis of K1115A

K1115A ${ }^{18} 8$ was thought to be biologically derived from an octaketide bearing a butyryl group as the starting unit (Scheme 9). Therefore, we employed butyryljuglone derivative 28 as the starting quinone. The reaction of $\mathbf{2 8}$ with the dioxine reagent 16 gave an adduct, which was treated successively with TMSCl$\mathrm{Et}_{3} \mathrm{~N}$ and CAN to give quinone 29 in 90% yield. Treatment of 29 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH gave a mixture of $\mathbf{3 0 a}(62 \%)$ and 31 (6%). The latter compound 31 was derived from the intramolecular Michael-type reaction followed by decarboxylation. The methyl ether of 30a was removed by treatment with BBr_{3} to afford 32 in 87% yield. Since attempted saponification of the methyl ester 32 to K1115A failed, the nucleophile in the reaction of $\mathbf{2 9}$ was changed to p-methoxybenzyl alcohol (PMB alcohol) and the PMB ester 30b was obtained in 72% yield. Simultaneous deprotection of the methyl ether and PMB ester of $\mathbf{3 0 b}$ was achieved by treatment with BBr_{3} at $-78^{\circ} \mathrm{C}$ to provide K1115A 8 in 59% yield. Identity of the synthetic and authentic K1115A was confirmed by NMR investigation of the mixed sample.

Scheme 8 Synthesis of crysophanol 1 aloe-emodin 2 and aloesaponarin I 6. Reagents and conditions: a) $\mathrm{AlCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; b) NaOH , aq. THF-MeOH, rt; c) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \longrightarrow \mathrm{rt}$.

Scheme 9 Synthesis of K1115A 8. Reagents and conditions: a) 16, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; TMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, rt; CAN, MeCN ; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt; c) $\mathrm{K}_{2} \mathrm{CO}_{3}, 4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{OH}$, rt; d) $\mathbf{3 0 a}, \mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} \longrightarrow \mathrm{rt}$; e) $\mathbf{3 0 b}, \mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \longrightarrow \mathrm{rt}$.

Conclusions

We have demonstrated that naturally occurring $1,6-$ and $1,8-$ dihydroxy- 9,10 -anthraquinones are prepared via the intramolecular aldol-type condensation of common naphthoquinones
bearing acyl and acetonyl groups. We have achieved the syntheses of chrysophanol, aloe-emodin, aloesaponarin, and K1115A, the last of which is reported to show an inhibitory activity towards activation protein I (AP-I).

Experimental

General details

Melting points are uncorrected. Unless otherwise specified, NMR spectra were obtained with a JEOL GSX-270 or JNM400 spectrometer at ambient temperature using CDCl_{3} as solvent and tetramethylsilane as internal standard for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} . J$-values are given in Hz . Mass spectra and high-resolution mass spectra were measured with a Hitachi M80B spectrometer under EI (20 eV) ionizing conditions. Column chromatography and TLC analysis were carried out using Wakogel C-200 and Kieselgel $60 \mathrm{~F}_{254}$ (Merck), respectively. Ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and THF were freshly distilled from sodium diphenyl ketyl. Dichloromethane, benzene, toluene, diisopropylamine, and triethylamine were distilled from CaH_{2} under an inert atmosphere and stored over molecular sieves $4 \AA$. Other commercially available materials were used without further purification.

Reaction of 11 with 2-(trimethylsiloxy)propene

To a solution of compound $11^{7}(460 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added $\mathrm{SnCl}_{4}\left(1.0 \mathrm{~mol} \mathrm{~L}{ }^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2.2 mL) and 2-(trimethylsiloxy)propene ($0.40 \mathrm{~mL}, 2.4 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After the addition, the mixture was stirred for 1 h at the same temperature. Ethyldiisopropylamine $(0.418 \mathrm{~mL}$, 2.4 mmol) was added and then the mixture was allowed to warm to room temperature. After 1 h , the reaction was quenched with water. The organic phase was separated and the aqueous phase was extracted with dichloromethane. The combined organic phase was washed successively with $5 \% \mathrm{HCl}$, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by a rotary evaporator to give a crude product, which was purified by silica gel chromatography ($30-50 \% \mathrm{EtOAc}-$ hexane) to give $290 \mathrm{mg}(40 \%)$ of 4-acetyl-5-hydroxy-6-methoxy-2-methyl-2-trimethylsiloxy-1,2-dihydronaphtho[1,2-b]furan 13 as pale yellow crystals (Found: C, 63.6; H, 6.65. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Si}$ requires C, $63.3 ; \mathrm{H}, 6.7 \%$); mp $109-110{ }^{\circ} \mathrm{C}$ (yellow needles from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane); $R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane $) 0.65 ; \delta_{\mathrm{H}} 0.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $1.75(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 2.67(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.54\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{3}\right)$, $4.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{H}^{7}\right), 7.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{8}\right)$, $7.47\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{9}\right)$ and $11.81(1 \mathrm{H}, \mathrm{br}$ s, OH$) ; \delta_{\mathrm{C}} 1.4\left(\mathrm{SiMe}_{3}\right), 29.1$ (2-Me), 32.3 (COMe), 48.2 (C3), 56.2 (OMe), 105.4 (C7), 110.4 (C2), 114.9 (C5a), 115.0 (C9), 115.6 (C4), 118.3 (C3a), 125.2 (C9a), 128.9 (C9), 145.4 (C9b), 154.8 (C5), 158.1 (C6) and 201.4 (COMe); $v_{\max }(\mathrm{KBr}) 3332,1651,1633,1591,1403,1282,1250$ and $997 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $360\left(\mathrm{M}^{+}, 100 \%\right)$, 318 (59), 270 (13) and 240 (11).

2-Acetonyl-3-acetyl-5-methyl-1,4-naphthoquinone 14

To a solution of $\mathbf{1 3}(184 \mathrm{mg}, 0.51 \mathrm{mmol})$ in acetonitrile $(13 \mathrm{~mL})$ was added a solution of CAN $(0.84 \mathrm{~g}, 1.53 \mathrm{mmol})$ in water $(6 \mathrm{~mL})$. After 10 min brine and CHCl_{3} were added. The organic phase was separated and the aqueous phase was extracted with CHCl_{3}. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated by a rotary evaporator to give $144 \mathrm{mg}(100 \%)$ of $\mathbf{1 4}$. An analytically pure sample was obtained by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether-hexane. 14 yellow needles (Found: C, 66.75; $\mathrm{H}, 5.05 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$ requires C , $67.1 ; \mathrm{H}, 4.9 \%$); mp $117-119^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.3; $\delta_{\mathrm{H}} 2.30(3 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 3.75(2 \mathrm{H}, \mathrm{s})$, $4.03(3 \mathrm{H}, \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 2.0$)$ and $7.73(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 30.5,31.6,40.3,56.5,116.3,118.3,119.1,119.6,133.5,135.4$, 137.6, 148.3, 159.8, 182.6, 184.6, 202.3 and 202.9; $v_{\max }(\mathrm{KBr})$

1716, 1700, 1660, 1587, 1475 and $1271 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $286\left(\mathrm{M}^{+}, 1 \%\right), 245$ (17), 244 (100), 243 (16), 229 (67) and 201 (18).

3-Acetyl-5-methoxy-2-[2-oxo-3-(pivaloyloxy)propyl]-1,4-naphthoquinone 15

For the experimental procedure, see the electronic supplementary information. \dagger

Yellow crystals (Found: C, 65.0; H, 5.75. $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 5.7 \%) ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane $) 0.45 ; \mathrm{mp} 120-$ $122{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.25(9 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s}), 3.69(2 \mathrm{H}, \mathrm{s}), 4.01(3 \mathrm{H}, \mathrm{s})$, $4.79(2 \mathrm{H}, \mathrm{s}), 7.32(1 \mathrm{H}, \mathrm{d}, J=7.8), 7.69(1 \mathrm{H}, \mathrm{t}, J=7.8)$ and 7.72 (1 H, d, $J=7.8$); $\delta_{\mathrm{C}} 27.1,31.7,36.1,38.7,56.6,68.0,118.4$, $119.1,119.6,133.4,135.5,136.8,148.8,159.9,177.6,182.4$, 184.4, 199.3 and 202.1; $v_{\text {max }}(\mathrm{KBr}) 2976,1750,1728,1708,1664$, $1640,1584,1272$ and $1160 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $388\left(\mathrm{M}^{+}+\right.$ 2, 4\%), $386\left(\mathrm{M}^{+}, 3\right), 368$ (17), 356 (25), 284 (25), 271 (94), 244 (57) and 143 (100).

Reaction of 11 with 16

To a CDCl_{3} solution $(0.5 \mathrm{~mL})$ of $\mathbf{1 1}(20 \mathrm{mg}, 0.087 \mathrm{mmol})$ in an NMR sample tube was added $16(32 \mathrm{mg})$ at $-70^{\circ} \mathrm{C}$. This mixture was immediately subjected to NMR measurements at $-20^{\circ} \mathrm{C}$. The structure of the adduct was elucidated by COSY. 6-[(3-Acetyl-5-methoxy-1-oxo-4-trimethylsiloxy-1,2-dihydro-2-naphthyl)methyl]-2,2-dimethyl-4 H -1,3-dioxin-4-one 17 showed $\delta_{\mathrm{H}} 0.22(9 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.91(1 \mathrm{H}, \mathrm{dd}, J=$ 13.9 and 12.0$), 2.25(1 \mathrm{H}, \mathrm{dd}, J=13.9$ and 5.6$), 2.34(3 \mathrm{H}, \mathrm{s})$, $3.93(4 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.3), 7.42(1 \mathrm{H}$, br d, $J=7.3$) and $7.51(1 \mathrm{H}$, dd, $J=8.3$ and 7.3$)$.

Work-up with acetylation. To a solution of $\mathbf{1 1}^{7}(230 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $\mathbf{1 6}(210 \mathrm{mg}, 1.2 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at that temperature and then warmed up to room temperature. After disappearance of 11 (TLC), the solvent was removed. Pyridine (1 mL) and acetic anhydride (1 mL) were added to the residue and the resulting mixture was stirred overnight. The volatile material was removed under reduced pressure $(c a .13 \mathrm{~Pa})$. The residue was chromatographed on silica gel ($30-50 \% \mathrm{EtOAc}-$ hexane $)$ to give $26 \mathrm{mg}(6 \%)$ of 6-[(1,4-diacetoxy-3-acetyl-5-methoxy-2-naphthyl)methyl]-2,2-dimethyl-4H-1,3-dioxin-4-one 18a and $294 \mathrm{mg}(71 \%)$ of 5^{\prime}-acetoxy-4'-acetyl-6'-methoxy-2,2-dimethylspiro $\left\{1,3\right.$-dioxane- $4,2^{\prime}\left(3^{\prime} H\right)$-naphtho[1,2-b]furan $\}$-6-one $\mathbf{1 9 a}$. 18a: pale yellow crystals (Found: C, 63.1; H, 5.4. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{9}$ requires $\mathrm{C}, 63.15 ; \mathrm{H}, 5.3 \%)$; mp $132-133.5^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane) $0.15 ; \delta_{\mathrm{H}} 1.60(6 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s}), 2.47(3 \mathrm{H}, \mathrm{s}), 2.56$ $(3 \mathrm{H}, \mathrm{s}), 3.63(2 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 5.15(1 \mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}, \mathrm{d}$, $J=8.5), 7.27(1 \mathrm{H}, \mathrm{d}, J=8.5)$ and $7.50(1 \mathrm{H}, \mathrm{t}, J=8.5) ; \delta_{\mathrm{C}} 20.6$, $20.8,24.8,31.2,32.3,56.2,94.5,107.0,107.7,114.4,119.0$, $120.4,128.9,130.0,132.2,141.8,143.9,155.8,160.8,168.0$, $168.5,169.0$ and $202.1 ; v_{\text {max }}(\mathrm{KBr}) 1763,1748,1735,1700,1377$, 1275 and $1205 \mathrm{~cm}^{-1} ; \mathrm{m} / z$ (rel. intensity) $372\left(\mathrm{M}^{+}-2 \mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right.$, 5%), 330 (22) and 270 (100). 19a: pale yellow crystals (Found: $\mathrm{C}, 63.7 ; \mathrm{H}, 5.45 \% . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{8}$ requires $\mathrm{C}, 63.8 ; \mathrm{H}, 5.35 \%$); mp $121-123{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane $) 0.4 ; \delta_{\mathrm{H}} 1.60(3 \mathrm{H}, \mathrm{s}), 1.79$ ($3 \mathrm{H}, \mathrm{s}$), $2.41(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 3.09(1 \mathrm{H}, \mathrm{d}, J=17.8), 3.20$ (1 H, d, $J=17.8), 3.60(1 \mathrm{H}, \mathrm{d}, J=17.8), 3.63(1 \mathrm{H}, \mathrm{d}, J=17.8)$, $3.94(3 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{dd}, J=7.1$ and 1.5) and 7.40-7.45 $(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 21.2,28.8,29.9,31.8,38.8,45.1,56.2,106.8$, $107.3,109.0,114.2,117.2,118.8,124.0,126.4,128.8,140.9$, $150.7,156.3,165.2,169.9$ and 198.9; $v_{\max }(\mathrm{KBr}) 1768,1751$, 1681, 1394, 1363 and $1205 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $414\left(\mathrm{M}^{+}\right.$, $2 \%), 356(7), 312(22), 270(100)$ and 255 (38).

Work-up with silylation. To a solution of $11^{7}(230 \mathrm{mg}$, $1.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $16(360 \mathrm{mg}$, 1.7 mmol) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at that temperature and then warmed up to room temperature. After
disappearance of $\mathbf{1 1}$ (TLC, within 1 h), the solvent was removed on a rotary evaporator to give a crude material. To the crude material in DMF (3 mL) were added $\mathrm{TBDMSCl}(226 \mathrm{mg}$, 1.5 mmol) and imidazole ($225 \mathrm{mg}, 3.3 \mathrm{mmol}$). The mixture was stirred overnight at room temperature, the reaction was quenched with water, and the mixture was extracted with ether. The ethereal phase was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator to give a residue, which was dissolved in MeCN (16 mL) and $50 \% \mathrm{HF}(1.8 \mathrm{~mL}, 60 \mathrm{mmol})$ was added. After being stirred for 20 h , the mixture was quenched with saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and ether. The organic phase was separated and the aqueous phase was extracted with ether. The combined ethereal phase was washed successively with saturated aq. NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporator. The residue was chromatographed on silica gel ($30-50 \%$ EtOAc-hexane) to give $171 \mathrm{mg}(35 \%)$ of 6-[(3-acetyl-1-tert-butyldimethylsiloxy-4-hydroxy-5-methoxy-2-naphthyl)methyl]-2,2-dimethyl-4H-1,3-dioxin-4-one 18b, 95 $\mathrm{mg}(16 \%)$ of 6 - $\{[3$-acetyl-1,4-bis(tert-butyldimethylsiloxy)-5-methoxy-2-naphthyl]methyl $\}$-2,2-dimethyl-4 H -1,3-dioxin-4-one 18c, $62 \mathrm{mg}(17 \%)$ of 4^{\prime}-acetyl- 5^{\prime}-hydroxy- 6^{\prime}-methoxy-2,2dimethylspiro $\left\{1,3\right.$-dioxane-4, ${ }^{\prime}\left(3^{\prime} H\right)$-naphtho[1,2-b]furan $\}$-6one 19b, and trace amounts of 4^{\prime}-acetyl-5'-tert-butyl-dimethylsiloxy-6'-methoxy-2,2-dimethylspiro \{1,3-dioxane-4,2'($3^{\prime} H$)-naphtho[1,2-b]furan $\}$-6-one 19c. 18b: pale yellow needles (Found: C, 64.0; H, 6.8. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Si}$ requires C, 64.2; $\mathrm{H}, 7.0 \%$); $\mathrm{mp} 121-123{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}(40 \%$ EtOAchexane) 0.59 ; $\delta_{\mathrm{H}} 0.11(6 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.63(6 \mathrm{H}, \mathrm{s}), 2.59$ $(3 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{s}), 4.05(3 \mathrm{H}, \mathrm{s}), 4.81(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{d}$, $J=7.9), 7.36(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and 7.9$), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.5)$ and $9.60(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}-3.3,18.6,25.0,26.0,30.9,32.4,56.4$, $93.5,105.6,106.5,114.9,117.4,117.7,123.3,126.6,130.8$, 142.4, 148.1, 156.5, 161.3, 171.0 and 204.4; $v_{\text {max }}(\mathrm{KBr}) 3342$, $1720,1687,1637$ and $1384 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $486\left(\mathrm{M}^{+}\right.$, 4%), 428 (29) and 386 (100). 18c: pale yellow needles (Found: C, 63.7; H, 7.8. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{Si}_{2}$ requires C, $64.0 ; \mathrm{H}, 8.05 \%$); mp 116.5$117.5^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.73 ; $\delta_{\mathrm{H}}=0.09(6 \mathrm{H}, \mathrm{s}), 0.15(6 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.62$ $(6 \mathrm{H}, \mathrm{s}), 2.57(3 \mathrm{H}, \mathrm{s}), 3.76(2 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{s})$, $6.83(1 \mathrm{H}, \mathrm{d}, J=7.7), 7.38(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 7.7$)$ and 7.60 (1 H, d, $J=8.6$); $\delta_{\mathrm{C}}-4.2,-3.2,18.5,18.7,20.0,26.1,26.3,30.9$, $33.0,55.2,93.5,106.2,106.6,115.9,116.4,120.1,126.8,130.5$, 131.2, 144.7, 145.4, 156.9, 161.3, 171.0 and 205.1; $v_{\text {max }}(\mathrm{KBr})$ $1720,1691,1631,1570,1376$ and $1294 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $600\left(\mathrm{M}^{+}, 3 \%\right), 542$ (18), 485 (100) and 426 (73). 19b: yellow needles (Found: C, 64.2; H, 5.4. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{7}$ requires $\mathrm{C}, 64.5$; $\mathrm{H}, 5.4 \%$); mp 169.5-172.5 (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.4; $\delta_{\mathrm{H}} 1.58(3 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{s}), 2.70(3 \mathrm{H}, \mathrm{s})$, $3.08(1 \mathrm{H}, \mathrm{d}, J=18.5), 3.17(1 \mathrm{H}, \mathrm{d}, J=18.5), 3.61(1 \mathrm{H}, \mathrm{d}, J=$ $18.1), 3.72(1 \mathrm{H}, \mathrm{d}, J=18.1), 4.09(3 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{m}), 7.44(2$ $\mathrm{H}, \mathrm{m})$ and $11.08(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 28.8,30.0,32.7,38.8,46.5,56.4$, 105.7, 106.7, 108.2, 114.8, 115.0, 116.3, 118.3, 124.9, 129.2, $145.0,154.4,157.8,165.6$ and 200.4; $v_{\max }(\mathrm{KBr}) 3294,1741$, 1653, 1637, 1400, 1286 and $1014 \mathrm{~cm}^{-1}$. 19c: pale yellow, waxy crystals (Found: C, 63.9; H, 7.1. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Si}$ requires C, $64.2 ; \mathrm{H}$, 7.0%); $R_{\mathrm{f}}\left(40 \%\right.$ EtOAc-hexane) $0.75 ; \delta_{\mathrm{H}}-0.11(3 \mathrm{H}, \mathrm{s}),-0.09$ $(3 \mathrm{H}, \mathrm{s}), 1.09(9 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s}), 2.65(3 \mathrm{H}, \mathrm{s})$, $3.07(1 \mathrm{H}, \mathrm{d}, J=17.4), 3.20(1 \mathrm{H}, \mathrm{d}, J=17.4), 3.51(1 \mathrm{H}, \mathrm{d}, J=$ 18.1), $3.55(1 \mathrm{H}, \mathrm{d}, J=18.1), 3.92(3 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{m})$ and $7.41(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}-4.7,-4.5,18.4,26.4,28.8,29.9,31.7,39.0$, 45.0, 55.2, 106.0, 106.7, 108.6, 113.6, 117.1, 120.1, 124.2, 126.2, 128.3, 147.2, 147.6, 157.7, 165.5 and 202.7; $v_{\text {max }}(\mathrm{KBr}) 1763$, $1680,1631,1570,1514,1394$ and $1267 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $486\left(\mathrm{M}^{+}, 2 \%\right), 384(10), 327(100), 312(22)$ and 297 (17).

Oxidative work-up. To a solution of compound $11(464 \mathrm{mg}$, $2.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $16(730 \mathrm{mg}$, 3.4 mmol) at $-78^{\circ} \mathrm{C}$ and then the cooling bath was removed After the mixture had been stirred for 1 h at room temperature,
$\operatorname{TMSCl}(1.27 \mathrm{~mL}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.78 \mathrm{~mL}, 20 \mathrm{mmol})$ were added and the mixture was stirred for 2 h . The reaction was quenched with saturated aq. NaHCO_{3}. The organic phase was separated and the aqueous phase was extracted with CHCl_{3}. The combined organic phase was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporator. The residue was dissolved in $\mathrm{MeCN}(20 \mathrm{~mL})$ and a solution of CAN $(1.64 \mathrm{~g}, 3 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$ was added at room temperature. After 10 min , the mixture was extracted with CHCl_{3}. The organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporator to give crude 6-[(3-acetyl-5-methoxy-1,4-dioxo-1,4-dihydro-2-naph-thyl)methyl]-2,2-dimethyl-4H-1,3-dioxin-4-one 20. Chromatography on silica gel (30-50\% EtOAc-hexane) gave 314 mg (84%) of pure 20 as yellow crystals (Found: C, 64.2; H, 4.7. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{7}$ requires C, 64.9; H, 4.9%); mp $130{ }^{\circ} \mathrm{C}$ (decomp.); $R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.25 ; $\delta_{\mathrm{H}} 1.65(6 \mathrm{H}, \mathrm{s}), 2.51(3 \mathrm{H}, \mathrm{s}), 3.49(2 \mathrm{H}$, s), $4.04(3 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{m})$ and $7.76(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 24.9,30.4,31.8,56.6,94.9,107.0,113.3,118.5,118.9,119.7$, $135.8,136.2,149.0,159.9,160.5,166.7,182.2,183.9$ and 200.9; $v_{\text {max }}(\mathrm{KBr}) 1728,1699,1658,1639,1630,1585,1390,1261$ and $1203 \mathrm{~cm}^{-1}$.

Intramolecular condensation of 13

To a solution of $\mathbf{1 3}(89 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry THF (5 mL) was added t-BuOK ($1.0 \mathrm{M} ; 0.62 \mathrm{~mL}, 0.62 \mathrm{mmol}$) in THF at $0{ }^{\circ} \mathrm{C}$. After the cooling bath had been removed the mixture was stirred for 14 h at room temperature. The reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with EtOAc. The combined extract was washed successively with water and brine, dried over MgSO_{4}, and concentrated by rotary evaporator. The residue was purified by silica gel chromatography ($30-50 \%$ EtOAc-hexane) to give 23 mg (35%) of 1-hydroxy-8-methoxy-3-methyl-9, 10 -anthraquinone (chrysophanol 8-O-methyl ether; 21a) and $2 \mathrm{mg}(4 \%)$ of 3-hydroxy-8-methoxy-1-methyl-9,10-anthraquinone (aloesaponarin II 8 - O-methyl ether; 22a). 21a: yellow crystals, mp ${ }^{195-197}{ }^{\circ} \mathrm{C}$ (lit., $\left.197{ }^{\circ} \mathrm{C},{ }^{16 a} 198^{\circ} \mathrm{C},{ }^{19}{ }^{196-197}{ }^{\circ} \mathrm{C}^{20}\right) ; R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.45 ; $\delta_{\mathrm{H}} 2.43(3 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 7.07(1 \mathrm{H}, \mathrm{d}$, $J=1.0), 7.33(1 \mathrm{H}, \mathrm{d}, J=8.1), 7.58(1 \mathrm{H}, \mathrm{d}, J=1.0), 7.73(1 \mathrm{H}, \mathrm{t}$, $J=8.1), 7.94(1 \mathrm{H}, \mathrm{d}, J=8.1)$ and $12.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 22.0$, $56.6,114.9,118.1,120.0,120.1,120.8,124.6,132.4,135.6$, $135.8,147.6,160.8,162.7,182.9$ and $188.5 ; v_{\text {max }}(\mathrm{KBr}) 3409$, $1637,1583,1446,1301,1274$ and $1246 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $268\left(\mathrm{M}^{+}, 100 \%\right), 250(43), 239(20), 222$ (49) and 181 (22). 22a: yellow crystals; mp 218-220 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(30 \%$ EtOAc-hexane) 0.2 ; $\delta_{\mathrm{H}}\left(\right.$ DMSO- $\left.d_{6} ; 50{ }^{\circ} \mathrm{C}\right) 2.94(3 \mathrm{H}, \mathrm{s}), 3.93(3 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{d}$, $J=2.6), 7.37(1 \mathrm{H}, \mathrm{d}, J=2.6), 7.52(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 2.5$)$, $7.72(2 \mathrm{H}, \mathrm{m})$ and $10.7(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $v_{\text {max }}(\mathrm{KBr}) 3465,1662$, $1646,1604,1585,1568,1458,1342$ and 1247.

Intramolecular condensation of 14

The reaction was carried out according to the procedure described above by using 111 mg of $\mathbf{1 4}$. Chromatographic purification (silica gel) gave $17 \mathrm{mg}(16 \%)$ of 21a and 39 mg (37%) of 22a.

Intramolecular condensation of 15

The reaction was performed according to the procedure described above by using 50 mg (0.13 mmol) of $\mathbf{1 5}$. Chromatographic purification (silica gel) gave $31 \mathrm{mg}(65 \%)$ of 21b as yellow crystals (Found: C, 68.4; H, 5.5. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{6}$ requires C, $68.5 ; \mathrm{H}, 5.5 \%)$, mp $163-165^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.35 ; $\delta_{\mathrm{H}} 1.28(9 \mathrm{H}, \mathrm{s}), 4.09(3 \mathrm{H}, \mathrm{s}), 5.17(2 \mathrm{H}, \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{d}, J=2.0)$, $7.38(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.5$), 7.71(1 \mathrm{H}, \mathrm{d}, J=2.0), 7.77(1 \mathrm{H}$, dd, $J=8.3$ and 7.8), $7.98(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 1.5$)$ and 12.98 $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 27.1,38.8,56.6,64.6,116.3,116.9,118.1,120.1$, $120.5,122.1,132.8,135.5,135.8,145.3,160.8,162.7,177.9$,
182.3 and $188.3 ; v_{\text {max }}(\mathrm{KBr}) 3432,2920,1724,1676,1632,1584$, 1284 and $1166 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 368 ($\mathrm{M}^{+}, 100 \%$), 284 (98), 267 (20) and 239 (30).

Treatment of 18a with acid in MeOH

To a solution of diacetate 18a in $\mathrm{MeOH}(10 \mathrm{~mL})-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.24 \mathrm{~mL}, 0.24 \mathrm{mmol})$ at room temperature. The mixture was stirred overnight. As some starting material remained (TLC), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10 drops) was added and the mixture was warmed to $50^{\circ} \mathrm{C}$. After disappearance of the starting material (TLC), the reaction was quenched with saturated aq. NaHCO_{3}. The mixture was extracted with EtOAc, and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated on a rotary evaporator. The residue was purified by silica gel chromatography ($30-50 \%$ EtOAc-hexane) to give 8 mg (12%) of methyl 4 -acetyl-5-hydroxy-6-methoxynaphtho[1,2-b]furan-2-acetate 23 as colourless crystals (HRMS Found: $\mathrm{M}^{+}, 328.0943 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $M, 328.0946$); $\mathrm{mp} 159-161^{\circ} \mathrm{C}$ (needles from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}\left(50 \%\right.$ EtOAc-hexane) $0.4 ; \delta_{\mathrm{H}} 2.79(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.92$ $(2 \mathrm{H}, \mathrm{s}), 4.09(3 \mathrm{H}, \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{d}, J=7.5), 7.01(1 \mathrm{H}, \mathrm{s}), 7.56$ $(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and 7.5$), 7.78(1 \mathrm{H}, \mathrm{d}, J=8.5)$ and $13.52(1 \mathrm{H}$, br s); $\delta_{\mathrm{C}} 31.9,34.4,52.4,56.3,105.6,105.7,107.4,109.9,113.0$, $122.2,126.6,130.6,144.0,150.6,159.0,160.5,169.2$ and 201.4; $v_{\text {max }}(\mathrm{KBr}) 3311,1730,1647,1633,1589,1389,1244,1214$ and $1029 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $328\left(\mathrm{M}^{+}, 100 \%\right), 313$ (49), 269 (43) and 239 (14).

Treatment of 20 with KHMDS in THF

To a solution of $\mathbf{2 0}(230 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry THF (10 mL) was added KHMDS ($4.46 \mathrm{~mL}, 2.23 \mathrm{mmol} ; 0.5 \mathrm{M}$ in toluene) at $-78^{\circ} \mathrm{C}$. After the addition, the mixture was allowed to warm to room temperature and was stirred for 1 h . The reaction was quenched by acidification with $5 \% \mathrm{HCl}$. The mixture was extracted with EtOAc, and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether-hexane. Filtration gave 118 mg (63%) of 4-hydroxy-5-methoxy-9,10-dioxo-9,10-dihydroanthracene-2acetic acid 24 as a yellow powder (Found: C, 61.7; H, 4.5. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 61.8 ; \mathrm{H}, 4.3 \%$); mp 234-237 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ ($40 \% \mathrm{EtOAc}$-hexane) 0.5 ; δ_{H} (DMSO- d_{6}) $3.75(2 \mathrm{H}, \mathrm{s}$), 3.99 ($3 \mathrm{H}, \mathrm{s}$), $7.25(1 \mathrm{H}, \mathrm{s}), 7.59(1 \mathrm{H}, \mathrm{s}), 7.60(1 \mathrm{H}, \mathrm{d}, J=6.8), 7.83$ $(2 \mathrm{H}, \mathrm{m}), 12.35(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$ and $12.77(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}) ; \delta_{\mathrm{C}}$ (DMSO- d_{6}) 40.3, 56.3, 115.2, 119.0, 119.2, 119.3, 119.8, 124.4, $131.9,134.7,135.8,143.7,160.4,161.1,170.9,181.8$ and $187.3 ;$ $v_{\text {max }}(\mathrm{KBr}) 3438,1716,1670,1635,1585,1282$ and $1226 \mathrm{~cm}^{-1}$; m / z (rel. intensity) $312\left(\mathrm{M}^{+}, 73 \%\right), 294$ (21), 268 (100), 250 (49), 222 (61) and 181 (28).

Treatment of 20 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH

To a solution of $\mathbf{2 0}(314 \mathrm{mg}, 0.85 \mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.17 \mathrm{mg})$ at room temperature. The suspension was stirred overnight and then $5 \% \mathrm{HCl}$ was added to neutralize. The mixture was extracted with EtOAc , and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed on silica gel (50% EtOAc-hexane) to give $193 \mathrm{mg}(70 \%)$ of methyl 3-hydroxy-8-methoxy-1-methyl-9,10-dioxo-9,10-dihydroanthracene-2carboxylate (aloesaponarin I 8-O-methyl ether; 25) as yellow crystals (Found: M^{+}, 326.0786. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{6}$ requires M, $326.0790) ; \mathrm{mp} 200-201{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(50 \%\right.$ EtOAc-hexane) $0.55 ; \delta_{\mathrm{H}}$ $2.88(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 4.03(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{OMe}), 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $7.33\left(1 \mathrm{H}, \mathrm{d}, J=8.3, \mathrm{H}^{7}\right), 7.65\left(1 \mathrm{H}, \mathrm{dd}, J=8.3\right.$ and $\left.7.3, \mathrm{H}^{6}\right), 7.67$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{4}\right), 7.83\left(1 \mathrm{H}, \mathrm{d}, J=7.3, \mathrm{H}^{5}\right)$ and $10.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; $\delta_{\mathrm{C}} 20.6(1-\mathrm{Me}), 52.8\left(\mathrm{CO}_{2} \mathrm{Me}\right), 56.6$ (8-OMe), $113.4(\mathrm{C} 4), 118.5$ (C7), 119.1 (C5), 121.8 (C2 or C9a), 124.8 (C8a), 128.1 (C9a or C2), 133.8 (C6), 134.8 (C10a), 137.5 (C4a), 144.9 (C1), 159.5 $(\mathrm{C} 8), 161.8(\mathrm{C} 3), 170.4\left(\mathrm{CO}_{2}\right), 183.3(\mathrm{C} 10)$ and $184.3(\mathrm{C} 9) ;$
$v_{\text {max }}(\mathrm{KBr}) 3572,3459,1712,1670,1587,1336$ and $1240 \mathrm{~cm}^{-1}$; m / z (rel. intensity) $326\left(\mathrm{M}^{+}, 100 \%\right), 311$ (54), 294 (17), 276 (47) and 220 (23).

Treatment of 20 with $\mathrm{Et}_{3} \mathrm{~N}$ in THF

To a solution of $\mathbf{2 0}(180 \mathrm{mg}, 0.49 \mathrm{mmol})$ in dry THF (10 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.68 \mathrm{~mL}, 4.9 \mathrm{mmol})$ at room temperature. The solution was stirred overnight and then water was added. The mixture was extracted with CHCl_{3}, and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed on silica gel ($30-50 \%$ EtOAc-hexane) to give 163 mg (94%) of 7 -methoxy-2,2,5-trimethyl- 4 H -anthra-[2,3-d][1,3]dioxin-4,6,11-trione 26 as yellow needles (Found: C, 67.8; H, 4.6. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}$ requires C, 68.2; H, 4.6\%); mp 222-225 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}(40 \% \mathrm{EtOAc}-$ hexane $) 0.4 ; \delta_{\mathrm{H}} 1.74(6 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 3.10$ ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $4.01(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{OMe})$, $7.32\left(1 \mathrm{H}, \mathrm{d}, J=8.1, \mathrm{H}^{10}\right)$, $7.63\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{12}\right), 7.64\left(1 \mathrm{H}, \mathrm{t}, J=8.1, \mathrm{H}^{9}\right)$ and $7.78(1 \mathrm{H}, \mathrm{d}, J=$ $\left.8.1, \mathrm{H}^{8}\right) ; \delta_{\mathrm{C}} 19.2(5-\mathrm{Me}), 25.7$ (2-Me), 56.6 (7-OMe), 105.8 (C2), 113.5 (C12), 118.0, 118.5, 119.0, 124.6, 130.8, 134.1, 134.4, 138.8, 148.6, 159.0, 159.0, 159.4, 182.9 (CO) and 184.1 (CO); $v_{\text {max }}(\mathrm{KBr}) 1738,1672,1595,1585,1323$ and $1221 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $352\left(\mathrm{M}^{+}, 73 \%\right), 294$ (100), 276 (82), 248 (20) and 220 (40).

Conversion of 26 to 25

To a solution of $\mathbf{2 6}(163 \mathrm{mg}, 0.46 \mathrm{mmol})$ in THF (5 mL) were added $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(640 \mathrm{mg}, 4.6 \mathrm{mmol})$ at room temperature. The suspension was stirred for 30 min and then aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with EtOAc, and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was chromatographed on silica gel to give $128 \mathrm{mg}(85 \%)$ of $\mathbf{2 5}$.

Treatment of 18b with KHMDS in THF

The reaction of $\mathbf{1 8 b}$ ($97 \mathrm{mg}, 0.2 \mathrm{mmol}$) was performed according to the procedure described above to give $31 \mathrm{mg}(50 \%)$ of $\mathbf{2 4}$.

Treatment of 18b with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathbf{~ M e O H}$

The reaction of $\mathbf{1 8 b}$ ($97 \mathrm{mg}, 0.2 \mathrm{mmol}$) was carried out according to the procedure described above to give $36 \mathrm{mg}(56 \%)$ of $\mathbf{2 5}$.

1,8-Dihydroxy-3-methyl-9,10-anthraquinone (chrysophanol; 1)

To a solution of compound 21a ($44 \mathrm{mg}, 0.16 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(0.8 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After the addition, the mixture was allowed to warm to room temperature. After disappearance of the starting compound 21a, the reaction was quenched with 1 M HCl . The mixture was extracted with CHCl_{3}, and the organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporator. The residue was purified by silica gel chromatography ($30-$ 50% EtOAc-hexane) to give 37 mg (91%) of chrysophanol 1 as yellow crystals, mp 192.5-193.3 ${ }^{\circ} \mathrm{C}$ (lit., 195-196 ${ }^{\circ} \mathrm{C}$, ${ }^{16 a} 194-$ $\left.195{ }^{\circ} \mathrm{C}^{19}\right), R_{\mathrm{f}}\left(30 \%\right.$ EtOAc-hexane) $0.45 ; \delta_{\mathrm{H}} 2.46(3 \mathrm{H}, \mathrm{s}), 7.10$ $(1 \mathrm{H}, \mathrm{s}), 7.28(1 \mathrm{H}, \mathrm{d}, J=8.8), 7.66(1 \mathrm{H}, \mathrm{s}), 7.66(1 \mathrm{H}, \mathrm{dd}, J=8.8$ and 7.4), $7.82(1 \mathrm{H}, \mathrm{d}, J=7.4), 12.00(1 \mathrm{H}, \mathrm{s})$ and $12.11(1 \mathrm{H}, \mathrm{s})$; $v_{\text {max }}(\mathrm{KBr}) 3255,3050,1676,1628,1606,1475,1452,1373$ and $1268 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $254\left(\mathrm{M}^{+}, 100 \%\right), 226$ (9), 197 (9) and 152 (8).

1,8-Dihydroxy-3-(pivaloyloxymethyl)-9,10-anthraquinone 27

To a solution of compound $\mathbf{2 1 b}(736 \mathrm{mg}, 2.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(6 \mathrm{mmol})$. After the addition, the mixture was stirred overnight at room temperature. The reaction was quenched with water (10 mL) and conc. HCl $(1.2 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

The residue was purified by silica gel chromatography (30-50\% EtOAc-hexane) to give $592 \mathrm{mg}(84 \%)$ of 27 as yellow crystals (Found: C, 67.8; H, 5.15. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, 67.8; H, 5.1\%); $\mathrm{mp} 164-166{ }^{\circ} \mathrm{C}$ (needles from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane); $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 0.65 ; $\delta_{\mathrm{H}} 1.29(9 \mathrm{H}, \mathrm{s}), 5.19(2 \mathrm{H}, \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{d}, J=1.7), 7.31$ $(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.0$)$, $7.69(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.8$), 7.77$ ($1 \mathrm{H}, \mathrm{d}, J=1.7$), $7.84(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 1.0$), 12.05(1 \mathrm{H}, \mathrm{s})$ and $12.07(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 27.2,38.9,64.5,115.2,115.8,118.2,120.1$, $122.0,124.8,133.5,133.9,137.3,147.0,162.6,162.8,177.9$, 181.5 and 192.7; $v_{\max }(\mathrm{KBr}) 3452,3220,3080$, 2972, 1730, 1676, 1622, 1456, 1440, 1278, 1168, 1154 and $772 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $354\left(\mathrm{M}^{+}, 84 \%\right), 270(100), 254$ (40), 253 (50) and 225 (56).

1,8-Dihydroxy-3-(hydroxymethyl)-9,10-anthraquinone (aloeemodin; 2)

To a solution of t-BuOK ($954 \mathrm{mg}, 8.5 \mathrm{mmol}$) in dry ether (17 mL) was added water $(0.04 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , a solution of $27(354 \mathrm{mg}, 1.0 \mathrm{mmol})$ dry THF $(4 \mathrm{~mL})$-dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added and then the cooling bath was removed. After 12 h , trifluoroacetic acid (10 mL) was added. After 1 h , the reaction was quenched with water $(20 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with CHCl_{3}. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated by rotary evaporator. The residue was purified by silica gel chromatography ($30 \% \mathrm{EtOAc}$-hexane) to give 106 mg (39%) of 2 as yellow crystals, mp $215-217^{\circ} \mathrm{C}$ (lit., 222-223 ${ }^{\circ} \mathrm{C},{ }^{21} 220{ }^{\circ} \mathrm{C}^{22}$); $R_{\mathrm{f}}(30 \%$ EtOAc-hexane) 0.3; $\delta_{\mathrm{H}}\left(\mathrm{DMSO}-d_{6}\right) 4.63(2 \mathrm{H}, \mathrm{d}, J=5.4), 5.59$ $(1 \mathrm{H}, \mathrm{t}, J=5.4, \mathrm{OH}), 7.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{d}, J=7.3)$, $7.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.70(1 \mathrm{H}, \mathrm{d}, J=7.3), 7.80(1 \mathrm{H}, \mathrm{t}, J=7.3)$, $11.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $11.96(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}} 62.0,114.4$, $115.9,117.1,119.3,120.6,124.4,133.1,133.3,137.3,153.7$, $161.3,161.6,181.4$ and $191.6 ; v_{\text {max }}(\mathrm{KBr}) 3404,1676,1628$, 1572,1456 and $1288 \mathrm{~cm}^{-1}$.

Methyl 3,8-dihydroxy-1-methyl-9,10-dioxo-9,10-dihydro-anthracene-2-carboxylate (aloesaponarin I; 6)

To a solution of $\mathbf{2 5}(14 \mathrm{mg}, 0.04 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added a 1 mol L -1 solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.45 \mathrm{~mL}$, $0.45 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After disappearance of $\mathbf{2 5}(c a .1 \mathrm{~h})$, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added ($\mathrm{pH} c a .2$). The mixture was extracted with EtOAc, and the extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residual solid was triturated with ether-hexane to afford $10 \mathrm{mg}(69 \%)$ of 6 as yellow powdery crystals, mp 204-206 ${ }^{\circ} \mathrm{C}$ [lit., 199-203 ${ }^{\circ} \mathrm{C}$ (decomp.) $\left.{ }^{17 a} \quad 206.5-207{ }^{\circ} \mathrm{C},,^{17 b} \quad 202.5-207{ }^{\circ}{ }^{\circ} \mathrm{C}^{17} \mathrm{c}\right] ; R_{\mathrm{f}}(40 \%$ EtOAc-hexane) 0.45; $\delta_{\mathrm{H}} 2.99(3 \mathrm{H}, \mathrm{s}), 4.06(3 \mathrm{H}, \mathrm{s}), 7.30$ ($1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.0), $7.62(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.8), 7.76 $(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 1.0$), 7.78(1 \mathrm{H}, \mathrm{s}), 10.45(1 \mathrm{H}, \mathrm{br})$ and $12.92(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }}(\mathrm{KBr}) 3318,1728,1668,1631,1579$, 1367 and $1215 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $312\left(\mathrm{M}^{+}, 70 \%\right)$, 297 (13), 280 (100), 252 (17), 224 (26), 196 (10) and 168 (19).

6-[(3-Butanoyl-5-methoxy-1,4-dioxo-1,4-dihydro-2-naphthyl)-methyl]-2,2-dimethyl-4H-1,3-dioxin-4-one 29

The reaction of $\mathbf{2 8}^{7}(258 \mathrm{mg}, 1.0 \mathrm{mmol})$ with $\mathbf{1 6}(322 \mathrm{mg}$, 1.5 mmol) was carried out according to the procedure described for the preparation of $\mathbf{2 0}$ to give $318 \mathrm{mg}(90 \%)$ of $\mathbf{2 9}$ as yellow crystals (Found: C, $66.1 ; \mathrm{H}, 5.8 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}$ requires C, $66.3 ; \mathrm{H}$, $5.6 \%) ; \mathrm{mp} 90-92{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ (40% EtOAc-hexane) $0.25 ; \delta_{\mathrm{H}} 0.99$ ($3 \mathrm{H}, \mathrm{t}, J=7.3$), $1.65(6 \mathrm{H}, \mathrm{s}), 1.74(2 \mathrm{H}$, sextet, $J=7.3), 2.75$ $(2 \mathrm{H}, \mathrm{t}, J=7.3), 3.42(2 \mathrm{H}, \mathrm{s}), 4.03(3 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}, \mathrm{s}), 7.74$ $(1 \mathrm{H}, \mathrm{m})$ and $7.76(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 13.6,16.4,24.9,30.7,46.1$, $56.6,94.8,107.0,118.5,118.9,119.6,133.3,135.8,136.1$, 149.3, 159.9, 160.6, 166.8, 182.4, 184.0 and 203.3; $v_{\text {max }}(\mathrm{KBr})$ $1729,1698,1664,1657,1632,1585,1280$ and $1261 \mathrm{~cm}^{-1}$; m / z (rel. intensity) $298\left(\mathrm{M}^{+}-100,52 \%\right), 281$ (14), 255 (100) and 240 (20).

Intramolecular cyclization of 29 with $\mathbf{K}_{2} \mathbf{C O}_{\mathbf{3}}$ in $\mathbf{~ M e O H}$

The reaction of $29(360 \mathrm{mg}, 0.9 \mathrm{mmol})$ with $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was carried according to the usual procedure as described for the reaction of $\mathbf{2 0}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and methanal to give compound $\mathbf{2 5}$. Silica gel chromatography ($30-50 \%$ EtOAchexane) gave 197 mg (62%) of methyl 3 -hydroxy- 8 -methoxy-9,10-dioxo-1-propyl-9,10-dihydroanthracene-2-carboxylate 30a and 16 mg (6%) of 2-ethyl-1-hydroxy-8-methoxy-3-methyl-9,10-anthraquinone 31. 30a: yellow crystals (Found: C, 67.5; H, 5.1. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{6}$ requires C, $67.8 ; \mathrm{H}, 5.1 \%$), mp $190-194{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}=92: 5: 3\right) 0.3 ; \delta_{\mathrm{H}} 1.06(3 \mathrm{H}, \mathrm{t}, J=7.3)$, $1.72(2 \mathrm{H}, \mathrm{m}), 3.29(2 \mathrm{H}, \mathrm{m}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.03(3 \mathrm{H}, \mathrm{s}), 7.31$ $(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.0$), 7.63(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.8$), 7.67$ $(1 \mathrm{H}, \mathrm{s}), 7.77(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 1.0$)$ and $10.12(1 \mathrm{H}, \mathrm{br}) ; \delta_{\mathrm{C}}$ 14.6, 25.1, 33.6, 53.0, 56.6, 113.7, 118.2, 118.9, 121.4, 125.0, $127.4,133.8,134.6,137.7,149.1,159.2,161.7,170.4,183.6$ and 184.4; $v_{\text {max }}(\mathrm{KBr}) 3400,1741,1662,1579,1240$ and $1215 \mathrm{~cm}^{-1}$; m / z (rel. intensity) 354 ($\mathrm{M}^{+}, 89 \%$), 339 (78), 337 (21), 321 (20), 307 (100), 305 (39) and 279 (24). 31: yellow crystals (HRMS Found: M^{+}, 296.1068. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}$ requires M, 296.1049), mp $185-188{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}=92: 5: 3\right) 0.65 ; \delta_{\mathrm{H}} 1.17$ $(3 \mathrm{H}, \mathrm{t}, J=7.5), 2.43(3 \mathrm{H}, \mathrm{s}), 2.79(2 \mathrm{H}, \mathrm{q}, J=7.5), 4.07(3 \mathrm{H}, \mathrm{s})$, $7.34(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.0$)$, $7.58(1 \mathrm{H}, \mathrm{s}), 7.72(1 \mathrm{H}, \mathrm{dd}$, $J=8.3$ and 7.8$), 7.96(1 \mathrm{H}, \mathrm{dd}, J=7.8$ and 1.0$)$ and $13.33(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}) ; v_{\text {max }}(\mathrm{KBr}) 3444,1672,1631,1585$ and $1274 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) 296 ($\mathrm{M}^{+}, 100 \%$), 281 (79), 278 (28), 263 (15) and 251 (12).

Intramolecular cyclization of 29 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in p-methoxybenzyl alcohol

To a solution of compound $\mathbf{2 9}(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ in dry THF $(0.5 \mathrm{~mL})$ were added p-methoxybenzyl (PMB) alcohol (0.1 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(174 \mathrm{mg}, 1.3 \mathrm{mmol})$ at room temperature. After being stirred for 24 h , the reaction mixture was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAc, and the organic phase was washed successively with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporator. The residue was purified by silica gel chromatography (30$50 \%$ EtOAc-hexane) to give 42 mg (72%) of p-methoxybenzyl 3-hydroxy-8-methoxy-9,10-dioxo-1-propyl-9,10-dihydroanthra-cene-2-carboxylate 30b as yellow crystals (Found: C, 70.2; $\mathrm{H}, 5.4 . \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{7}$ requires C, $70.4 ; \mathrm{H}, 5.25 \%$); mp 171-172 ${ }^{\circ} \mathrm{C}$; R_{f} (40% EtOAc-hexane) $0.3 ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{t}, J=7.0), 1.59(2 \mathrm{H}, \mathrm{m})$, $3.24(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.98(3 \mathrm{H}, \mathrm{s}), 5.39(2 \mathrm{H}, \mathrm{s}), 6.92(2 \mathrm{H}$, $\mathrm{m}), 7.28(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.40(2 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.8), $7.65(1 \mathrm{H}, \mathrm{s}), 7.77(1 \mathrm{H}, \mathrm{d}, J=7.8)$ and $10.14(1 \mathrm{H}, \mathrm{br}$, $\mathrm{OH}) ; \delta_{\mathrm{C}} 14.3,25.2,33.3,55.3,56.6,68.3,113.8,114.2,118.2$, 118.9, 121.1, 125.2, 126.4, 127.5, 131.0, 133.7, 134.7, 137.8, 149.3, 159.2, 160.2, 161.9, 169.8, 183.6 and 184.4; $v_{\text {max }}(\mathrm{KBr})$ $3529,3434,1718,1691,1670,1649,1577,1513,1425,1330$, 1240 and $1213 \mathrm{~cm}^{-1} ; m / z$ (rel. intensity) $460\left(\mathrm{M}^{+}, 5 \%\right), 339$ (21), 228 (19), 197 (11) and 121 (100).

Methyl 3,8-dihydroxy-9,10-dioxo-1-propyl-9,10-dihydro-anthracene-2-carboxylate 32

The reaction of $\mathbf{3 0 a}(177 \mathrm{mg}, 0.5 \mathrm{mmol})$ was carried out according to the procedure described for the preparation of chrysophanol 1 except that BBr_{3} was used instead of AlCl_{3} to give 115 $\mathrm{mg}(87 \%)$ of 32 as orange crystals (Found: C, 65.3; H, 4.8. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires C, $65.3 ; \mathrm{H}, 4.9 \%$); mp $190-193.5^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(40 \%\right.$ EtOAc-hexane) $0.45 ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-d_{6}\right) 1.00(3 \mathrm{H}, \mathrm{t}, J=$ 7.3), $1.60(2 \mathrm{H}, \mathrm{m}), 3.03(2 \mathrm{H}, \mathrm{m}), 3.89(3 \mathrm{H}, \mathrm{s}), 7.32(1 \mathrm{H}, \mathrm{dd}$, $J=8.3$ and 1.5$), 7.63(1 \mathrm{H}, \mathrm{dd}, J=7.3$ and 1.5$), 7.66(1 \mathrm{H}, \mathrm{s})$, $7.71(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.3$), 11.42(1 \mathrm{H}, \mathrm{br})$ and $12.74(1 \mathrm{H}$, $\mathrm{br}) ; \delta_{\mathrm{C}}\left(\right.$ DMSO- $d_{6} ; 80^{\circ} \mathrm{C}$) 13.9, 23.1, 33.8, 51.8, 112.1, 116.6, $117.9,121.8,124.0,129.4,132.1,135.6,136.9,145.4,158.7$, 161.2, 166.6, 181.5 and 188.7; $v_{\text {max }}(\mathrm{KBr}) 3388,1720,1660$, $1630,1577,1467,1243,1214$ and $1080 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}$ (rel. intensity) $340\left(\mathrm{M}^{+}, 57 \%\right), 325(13), 307(22), 290(100)$ and $265(20)$.

3,8-Dihydroxy-9,10-dioxo-1-propyl-9,10-dihydroanthracene-2-carboxylic acid (K1115A; 8)

An identical reaction of $\mathbf{3 0 b}(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ was carried out as above to give $17 \mathrm{mg}(59 \%)$ of $\mathbf{8}$ as orange crystals; $\mathrm{mp} 243-$ $245^{\circ} \mathrm{C}$ (lit., $\left.{ }^{11} 255-258^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=94\right.$: $5: 1) 0.4 ; \delta_{\mathrm{H}}\left(\mathrm{DMSO}-d_{6}\right) 1.02(3 \mathrm{H}, \mathrm{t}, J=7.3), 1.61(2 \mathrm{H}, \mathrm{m})$, $3.08(2 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.0$), 7.63(1 \mathrm{H}, \mathrm{s}), 7.65$ $(1 \mathrm{H}, \mathrm{dd}, J=7.6$ and 1.5$), 7.74(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 7.6$), 11.8$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 12.91(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $13.4(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $v_{\max }(\mathrm{KBr}) 3388,1736,1707,1670,1631,1582,1468,1363$, 1321, 1270, 1234 and $1215 \mathrm{~cm}^{-1}$; MS m / z (rel. intensity) 326 ($\mathrm{M}^{+}, 48 \%$), 293 (22), 290 (100) and 265 (19).

Acknowledgements

Financial support from the Grant-in-Aid for Scientific Research (12640521) from the Ministry of Education, Science, Sports and Culture are greatly acknowledged. We also thank Dr Masaki Goto (Eisai Co. Ltd.) for the gift of natural K1115A.

References

1 R. H. Thomson, Naturally Occurring Quinones III, Chapman and Hall, London, 3rd edn., 1987.
2 H . Inouye and E. Leistner, The Chemistry of the Quinonoid Compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1988, vol. 2, ch. 22, p. 1293.
3 R. H. Thomson, Naturally Occurring Quinones: Recent Advances, Blackie Academic \& Professional, London, 4th edn., 1997.
4 (a) K. Krohn, N. Böker, U. Flörke and C. Freund, J. Org. Chem., 1997, 62, 2350; (b) M. Yamaguchi, T. Okuma, A. Horiguchi, C. Ikeura and T. Minami, J. Org. Chem., 1992, 57, 1647; (c) T. M. Harris, C. M. Harris, T. A. Oster, L. E. Brown, Jr. and J. Y. C. Lee, J. Am. Chem. Soc., 1988, 110, 6180; (d) H. Uno, Y. Naruta and K. Maruyama, Tetrahedron, 1984, 40, 4725; S. Mahalingam, P. C. Kuzuma, J. Y.-C. Lee and T. M. Harris, J. Am. Chem. Soc., 1985,

107, 7760; (e) T. M. Harris, A. D. Webb and C. M. Harris, J. Am. Chem. Soc., 1976, 98, 6065
5 The Chemistry of the Quinonoid Compounds, ed. S. Patai, Wiley, London, 1974.
6 For the preliminary communication, see H. Uno, Y. Nagamachi, E. Honda, A. Masumoto and N. Ono, Chem. Lett., 2000, 1014.

7 H. Uno, J. Org. Chem., 1986, 51, 350.
8 Y. Naruta, H. Uno and K. Maruyama, J. Chem. Soc., Chem. Commип., 1981, 1277; Y. Naruta, Y. Nishigaichi and K. Maruyama, J. Org. Chem., 1988, 53, 1192.

9 K. Kobayashi, M. Uchida, S. Watanabe, A. Takanohashi, M. Tanmatsu, O. Morikawa and H. Konishi, Tetrahedron Lett., 2000, 41, 2381.
10 K. Krohn, N. Böker, A. Gauhier, G. Schäfer and F. Werner, J. Prakt. Chem., 1996, 338, 349.
11 M. A. Brimble, L. J. Duncalf and D. Neville, J. Chem. Soc., Perkin Trans. 1, 1998, 4165 and references cited therein.
12 (a) B. Kesteleyn and N. D. Kimpe, J. Org. Chem., 2000, 65, 640; (b) B. Kesteleyn, L. V. Puyvelde and N. D. Kimpe, J. Org. Chem., 1999, 64, 438.
13 T.-H. Chan and P. Brownbridge, J. Chem. Soc., Chem. Commun., 1979, 578.
14 B. L. Pagenkopf, J. Krüger, A. Stojanovic and E. M. Carreira, Angew. Chem., Int. Ed., 1998, 37, 3124; Y. Kim, R. A. Singer and E. M. Carreira, Angew. Chem., Int. Ed., 1998, 37, 1261; R. A. Singer and E. M. Carreira, J. Am. Chem. Soc., 1995, 117, 12360.
15 In the reaction of acetylquinone with allylic stannanes, similar cyclohexadienone derivatives were isolated by recrystallization. See the supplementary material of ref. 7.
16 (a) F. M. Hauser and S. Prasanna, J. Org. Chem., 1982, 47, 383; (b) G. P. Slater, R. H. Haskins, L. R. Hogge and L. R. Nesbitt, Can. J. Chem., 1967, 45, 92; (c) M. E. Jung and J. A. Lowe, J. Chem. Soc., Chem. Commun., 1978, 95.
17 (a) A. Yagi, K. Makino and I. Nishioka, Chem. Pharm. Bull., 1974, 22, 1159; (b) G. Roberge and P. Brassard, Synthesis, 1979, 148; (c) D. W. Cameron, D. J. Deutscher, G. I. Feutrill and P. G. Griffiths, Aust. J. Chem., 1981, 34, 2401.
18 N. Naruse, M. Goto, Y. Watanabe, T. Terasawa and K. Dobashi, J. Antibiot., 1998, 51, 545.

19 L. Hörhammer, H. Wagner and E. Müller, Chem. Ber., 1965, 98, 2859.
20 K. Krohn, Tetrahedron Lett., 1980, 21, 3557.
21 N. Benfaremo and M. P. Cava, J. Org. Chem., 1985, 50, 139.
22 A. T. Khan, B. Blessing and R. R. Schmidt, Synthesis, 1994, 255.

